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Abstract. We study the test-charge–test-charge interaction when screening effects of a two-
dimensional electron gas are taken into account. The Schrödinger equation is solved in the
momentum space by diagonalizing the corresponding matrix and the results are compared with
variational calculations. For twopositive (or negative) test-chargesbound statesare obtained
for low electron densities when many-body effects are incorporated in the screening function.
For a density larger than a critical density,rs < rsc ≈ 2.0 (rs is the Wigner–Seitz parameter),
no bound states are found. Below the critical density,rs > rsc, the number of bound states and
their energy increase with decreasing density and the ground-state binding energy saturates near
−0.65 Rydberg∗. Finite-width effects for quantum wells are also discussed. We present new
results for bound states between apositiveand anegativetest charge and we discuss effects of
exchange and correlation on the binding energies.

1. Introduction

It is known that a test charge in a three-dimensional electron gas is screened at large
distances and the screened potential exhibits Friedel oscillations, which occur already within
the framework of the random-phase approximation (RPA) [1]. The motivation for this paper
is to understand the possibility of a Coulomb interaction-induced attraction in the electron
gas between two equally charged particles. Such a possibility was suggested in the literature
in the early 1960s and studied for a short-range potential [2]. In the low-density region a
Wigner crystal is expected [3]. In the present paper we consider test-charges with charge
q = ±e (and no spin), which are distinguishable from the electrons responsible for the
screening.

For the two-dimensional electron gas it was demonstrated [4] that many-body effects
described by the local-field correction (LFC) strongly enhance Friedel oscillations: many-
body effects in the low-density regime give rise to bound states between two equally charged
test particles. The calculated binding energies for quasi-one-dimensional [5] and two-
dimensional [6] electron gases are in the range of 1 Rydberg. These results have been
obtained by a variational method [5] and by a multiple scattering approach [6]. Here we
study the two-dimensional electron gas by solving the Schrödinger equation and by using
a variational method. We use the concept of the LFC included in the dielectric screening
function within the formulation of Singwi, Tosi, Land and Sjölander (STLS) [7–11].

§ The ‘Laboratoire de Physique des Solides’ and the ‘Groupe de Physique des Solides’ are ‘Laboratoires associés
au Centre National de la Recherche Scientifique (CNRS)’.
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We report in this paper large bound-state energies found for screened repulsive test
charges when the LFC is taken into account. This means that in two dimensions many-
body effects for the screening function are very important. For the ground state the electron
density is strongly decreased around the charged centre in order to avoid the repulsive
Coulomb potential at small distances. Let us assume that we place two negative (or positive)
test charges into a metal and the screening being provided by the electrons of the metal.
Bound states should exist forrs > rsc = 2 (rs is the Wigner–Seitz parameter). The like-
charge attraction could lead to bound pairs of charge±2e and to superconductivity.

In the ideally two-dimensional hydrogen-like atom [12] the binding energy is enhanced
compared with the binding energy of the hydrogen atom in three dimensions. For, ideally,
two-dimensional systems the width perpendicular to the plane is zero. Realistically two-
dimensional systems (quantum wells) are characterized by a finite width perpendicular to the
plane and the binding energy depends on this width [13]. Moreover, the screened potential
within the RPA always has a bound state and screening effects are not strong enough to
make the binding energy vanish [13–15]. We discuss the effects of many-body effects on
the ground-state binding energy and we present new results for the bound-state energy of
excited states and Mott’s critical density for excited states. We believe that the results of
the present paper are relevant for the physics of excitons in the metallic regime and for
charged impurities in two-dimensional metals.

The paper is organized as follows. In section 2 we describe the model and the theory.
Our results for screened repulsive test charges are given in section 3. In section 4 we present
our results for screened attractive test charges. We discuss our results in section 5 and we
conclude in section 6.

2. Model and theory

2.1. The screened Coulomb interaction

As the model we use a two-dimensional electron gas with a parabolic dispersion. Distances
are expressed in units of the effective Bohr radiusa∗ = εL/m∗e2 with the Planck constant
h = 2π;m∗ is the effective mass andεL is the dielectric constant of the background material.
We suppose that one test charge is fixed in space, otherwise the reduced mass should be used.
Energy values are expressed in units of the effective Rydberg(Rydberg∗ = m∗e4/2ε2

L). The
density parameterrs is given by rs = 1/[πN∗2A ]1/2 and rsa∗ is the Wigner–Seitz radius.
N = k2

F /2π is the two-dimensional electron density andkF is the Fermi wavenumber with
kF a

∗ = 21/2/rs . The Fermi energyεF is given asεF /Rydberg∗ = 2/r2
s .

The Coulomb interaction potential in the Fourier space between a (fixed) negative (or
positive) test charge and another negative (or positive) test charge is repulsive and given by
Vt(q) = 2πe2/εLq. If the interaction is screened by an electron gas the screened interaction
potentialVsc,t (q) is written asVsc,t (q) = Vt(q)/ε(q). The dielectric functionε(q) is given
by [1]

1

ε(q)
= 1− V (q)X0(q)

1+ V (q)[1−G(q)]X0(q)
(1)

where X0(q) is the Lindhard function in two dimensions [16] andV (q) is the bare
interaction potentialV (q) = 2πe2/εLq.

In our calculation we use forG(q) the sum-rule approximation [10] of the STLS
approach. However, instead of parametrizing the LFC by two coefficients we use three
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Figure 1. Vsc,t (rmin) andrmin versusrs as calculated by usingG(q) in equation (2).

coefficients in order to satisfy the compressibility sum rule. The LFC is given by [11]

G(q) = r2/3
s

1.402q

[2.644q2
0C1(rs)2+ q2C2(rs)2− q0qC3(rs)]1/2

(2)

whereq0 = 21/2/r
2/3
s a∗ is a characteristic wavenumber. The coefficientC1(rs) is determined

by the compressibility sum rule [1] using the analytical expression for the compressibility
available in the literature [17]. C2(rs) is fixed by the Shaw–Kimball relation [18]
G(q →∞) = 1−g(0) and the sum-rule approach:C2(rs) = 1.402r2/3

s /[1−g(0)] [10]. For
g(0) we use the analytical expression [19]g(0) = 1/2I0(23/4r

1/2
s )2. I0(z) is the zero-order

modified Bessel function.C3(rs) is calculated using the relation between the pair-correlation
function g(0) and the static structure factorS(q). It can be shown [11] that the LFCG(q)
reproduces Monte Carlo calculations for the static susceptibility [20].

The screened Coulomb interaction in real space is given by

Vsc,t (r) =
∫ ∞

0
dq qJ0(qr)Vsc,t (q)/2π (3)

whereJ0(x) is the zero-order Bessel function of the first kind. Representative examples for
Vsc,t (r) have been shown in [4]. A strong minimum was found inVsc,t (r) at r = rmin. A
systematic study ofrmin andVsc,t (rmin) versusrs , see figure 1, shows thatVsc,t (rmin) presents
a weak minimum of−0.85 Rydberg∗ at rs = 10. Vsc,t (rm) becomes very small forrs < 1.
In the low-density rangermin is large compared toa∗ and bound states are very extended
in real space.

2.2. The Schr¨odinger equation

We solve the Schrödinger equation for a test charge moving in the external potentialVsc,t (r).
Vsc,t (r) is a central potential and only depends onr. The angular dependence of the
wavefunctionψ(r) in the real space and in the momentum space is described by exp(±ilϕ).
States with given quantum numberl > 0 are degenerate(gl = 2) and thel = 0 state is non-
degenerate. States with different values ofl are not degenerate: for the screened potential
the accidental degeneracy of the bare Coulomb interaction is lifted.

Usingψ(r) = φnr l(r) exp[±ilϕ] one obtains forφnr l(r) a radial Schr̈odinger equation
for the effective potentialVeff(r) = Vl(r) + Vsc,t (r) with Vl(r) = l2/2m∗r2. From general
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arguments [12] it is clear that forl > 0 the behaviour of the wavefunction for smallr is
determined byVl(r) with φnr l(r → 0) ∝ rl . In the momentum space the wavefunction is
given byψ(q) = φnr l(q) exp(±ilϕ) with φnr l(q → 0) ∝ ql . In the following we use as
notationφ or φl for φnr l . The Schr̈odinger equation for the screened potential is solved
numerically in the momentum space:

q2

2m
ψ(q)+ 1

4π2

∫
d2 q′Vsc,t (q − q′)ψ(q′) = Eψ(q). (4)

Using polar coordinates, we have discretized the integral overq′ in equation (4) according
to a set of(q ′, ϕ′). The sampled values inq ′ andϕ′ are those used in Gauss routines for
integration. Five adjacent intervals inq ′ and 12 inϕ′ are used to sample the integral. The
Hamiltonian operator in equation (4) is discretized under the form of a matrix. The order
of this matrix is 3000 [5×10 points for 06 q ′a∗ <∞ and 12×5 points for 06 ϕ′ 6 2π ].
The eigenenergy–eigenfunction problem is solved numerically by a standard method for
matrix diagonalization.

Using a trial wavefunctionφv(r) the variational energyEvar is given by

Evar = 〈T 〉 + 〈Vl〉 + 〈Vsc,t 〉 (5)

where 〈O〉 means〈O〉 = ∫∞
0 drrφv(r)Oφv(r). In the following we denote the trial

wavefunction byφiv(r) and the indexi describes different forms. A Gaussian form is
used fori = 1, 2 (sections 3 and 4.4) and an exponential form fori = 3–5 (section 4).

3. Screened repulsive test charges

3.1. Matrix diagonalization

For screened repulsive test charges andrs < 2.0 no bound states are found. Between
2.0 < rs < 3.9 we found a single bound state. The bound state energy as a function ofrs
is given in the inset of figure 2. The binding energy approaches zero at a critical density
rsc = 2.0. Our variational results are also shown in the inset and give a smaller binding
energy with a critical density given byrsc = 2.4. For 3.9 6 rs 6 6.6 we find three bound
states, where the two last states (l = 1, gl = 2) are degenerate.

The eigenfunctionsψ(q, ϕ) which we obtain numerically are defined in the momentum
space. In order to characterize the angular momentuml of the bound states we have studied
(i) the behaviour of the wavefunction at small wavenumbers and (ii) the angular dependence
of the wavefunction. The degeneracy only allows us to discriminate betweenl = 0 and
l 6= 0. Using the angular symmetry of the wavefunction one can show that [12]

φl(r) ∝
∫ ∞

0
dq ′q ′Jl(q ′r)φl(q ′) (6)

whereJl(x) is the Bessel function of the first kind and orderl. From equation (6) and
Jl(x) ∝ xl it follows immediately thatφ0(r → 0) = constant. Numerical results for the
ground stateψ(r, ϕ) = φ0(r) versusr are shown in figure 3 forrs = 10. Forr = 0 we find
a very small finite value. This finite value decreases with increasingrs . φ0(r) shows a large
peak at aboutr∗ = 2.8a∗ which corresponds to the valuermin of the screened potential. The
ground-state wavefunction in theq space is shown in figure 4. Note that nearqa∗ = 0.64
the wavefunctionψ(q, ϕ) = φ0(q) changes its sign. Forrs = 10 our numerical results for
the excited-state wavefunctions are shown in figure 5.
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Figure 2. The bound-state energiesEnum for screened repulsive test charges found by matrix
diagonalization versusrs . The full circles representnr = 1, the open circles representnr = 2
and the dotted curves representnr = 3. The variational resultsEmin are shown as full curves
for nr = 1 and as broken curves fornr = 2. In the inset we show the ground-state energy
versusrs for 2< rs < 4.

Figure 3. The wavefunctionψ(r) of the ground state(nr = 1, l = 0) for screened repulsive
test charges forrs = 10 versusr. The full circles show the results of the matrix diagonalization
and the full curve represents the variational calculation.

3.2. The variational method

The screened potential near the minimum atrmin can be described by a one-dimensional
oscillator potential. Therefore, we use as the variational wavefunctionφ1v(r) =
Ark1/2 exp(−r2/2α2) with A as the normalization constant and given byA2 = 2/0[(k1 +
2)/2]α2+k1. k1 andα are the variational parameters.φ1v(r) describes states with a given
angular momentuml and φ1v(r) has one nodenr = 1 at r = 0 if k1 > 0. Solving the
variational problem with this wavefunction gives bound states with quantum numbersnr = 1
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Figure 4. The wavefunctionψ(q) of the ground state(nr = 1, l = 0) for screened repulsive
test charges forrs = 10 versus wavenumberq. The full circles show the results of the matrix
diagonalization and the full curve represents the variational calculation.

and l = 0, 1, 2, . . .. The wavefunctionφ1v(r) shows a maximum atr∗ = (k1/2)1/2α.
We find for the radial wavefunction withnr = 1 the analytical results〈T 〉 =

Rydberg∗a∗2/α2, 〈Vl〉 = 2 Rydberg∗a∗2l2/α2k1 and

〈Vsc,t 〉 = 2 Rydberg∗a∗
∫ ∞

0
dq 1F1[1+ k1/2; 1;−q2α2/4]/ε(q) (7)

where 1F1(x; y; z) is the degenerate hypergeometric function [21]. Some representative
numerical results are given in table 1 for differentrs . The variational method provides
energies only slightly higher than the exact results obtained by matrix diagonalization. The
bound states are very extended in space due to the repulsive potential forr → 0.

For the states with two nodesnr = 2 we use for the radial wavefunctionφ2v(r) =
B[rk2/2− Crk3/2] exp(−r2/2β2). φ2v(r) describes the states withnr = 2 andl = 0, 1, 2 . . .
and we find

〈T 〉 = Rydberg∗
a∗2

2
B2βk2{0(k2/2)k2/2+ C2βk3−k20(k3/2)k3/2

+Cβk3/2−k2/20(k2/4+ k3/4)(k
2
2/8+ k2

3/8− k2k3/4− k2/2− k3/2)} (8a)

〈Vl〉 = Rydberg∗
a∗2

2
l2B2βk2{0(k2/2)+ C2βk3−k20(k3/2)

−2Cβk3/2−k2/20(k2/4+ k3/4)} (8b)

and

〈Vsc,t 〉 = Rydberg∗a∗B2
∫ ∞

0
dq

1

ε(q)
{βk2+20(1+ k2/2)1F1[1+ k2/2; 1;−q2β2/4]

−2Cβk2/2+k3/2+20(1+ k2/4+ k3/4)1F1[1+ k2/4+ k3/4; 1;−q2β2/4]

+C2βk3+20(1+ k3/2)1F1[1+ k3/2; 1;−q2β2/4]}. (8c)

With the normalization condition we derive

1/B2={βk2+20(1+ k2/2)− 2Cβk2/2+k3/2+20(1+ k2/4+ k3/4)+ C2βk3+20(1+ k3/2)}/2.
(9)
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Figure 5. The wavefunctionψ(q) of the first
excited states(nr = 1, l = 1 − 3 and nr =
2, l = 0) for screened repulsive test charges for
rs = 10 versus wavenumberq. The full circles
show the results of the matrix diagonalization
and the full curve represents the variational
method.

The condition forC follows from 〈φ1v|φ2v〉 = 0 and we obtain

C =
[

2α2β2

α2+ β2

]k2/4−k3/4
0(1+ k1/4+ k2/4)

0(1+ k1/4+ k3/4)
. (10)

Numerical results of the bound-state energies found with the variational approach for the
statesnr = 2 andl = 0, 1, 2, . . . are given in table 2 together with results from the matrix
diagonalization.

Figure 2 represents a summary of the results concerning the binding energies as functions
of rs . Bound states are found for low and intermediate densities. They can either
be calculated numerically by the matrix diagonalization method or by a quasi-analytical
variational method. 3s and 3p states have been found by matrix diagonalization (see the
dotted curves in figure 2).

Using the Bessel functions of the first kind the wavefunctionsφl(r) can be Fourier
transformed. One obtains

φl(q) ∝
∫ ∞

0
dr rJl(qr)φl(r). (11)
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Table 1. Bound-state energiesEmin for a screened repulsive test charge found by the variational
method together with the variational parametersα andk1 for φ1v(r) for different rs values. The
corresponding bound statesEnum found by matrix diagonalization are also given.

rs State l α/a∗ k1 Emin/Rydberg∗ Enum/Rydberg∗

20 1s 0 3.645 2.493 −0.6482 −0.6496
20 1p 1 3.618 3.254 −0.5955 −0.5963
20 1d 2 3.677 4.612 −0.4811 −0.4816
20 1f 3 3.815 6.029 −0.3473 −0.3478
20 1g 4 4.008 7.385 −0.2109 −0.2117
20 1h 5 4.266 8.583 −0.0791 −0.0807

10 1s 0 2.818 1.832 −0.5563 −0.5589
10 1p 1 2.818 2.714 −0.4460 −0.4468
10 1d 2 2.978 4.019 −0.2343 −0.2362
10 1f 3 3.305 5.139 −0.0128 −0.0161

5 1s 0 2.299 1.272 −0.3403 −0.3428
5 1p 1 2.394 2.202 −0.1333 −0.1395

4 1s 0 2.204 1.100 −0.2432 −0.2542

3 1s 0 2.183 0.865 −0.1031 −0.1240

2.5 1s 0 2.358 0.668 −0.0139 −0.0496

2 1s 0 — — — −0.0022 1

Table 2. Bound-state energiesEmin for a screened repulsive test charge found by the variational
method withφ2v(r) together with the variational parametersβ , k2, andk3 for differentrs values.
The corresponding bound statesEnum found by matrix diagonalization are also given.

rs State l β/a∗ k2 k3 Emin/Rydberg∗ Enum/Rydberg∗

20 2s 0 3.826 2.201 6.408 −0.3490 −0.3522
20 2p 1 3.982 3.716 5.467 −0.3015 −0.3016
20 2d 2 4.093 5.808 5.808 −0.2044 −0.2051
20 2f 3 4.276 7.093 7.127 −0.0949 −0.0982

10 2s 0 3.281 1.828 4.607 −0.0795 −0.0851

For l = 0 the wavefunction in the momentum space is given byφl(q → 0) = constant. For
nr = 1 andnr = 2 the variational wavefunctions in the momentum space can be expressed
in terms of degenerate hypergeometric functions [21]. We only give the explicit results for
nr = 1: equation (11) can be used directly in order to calculateφl(q). For φ1v(r) we find

φ1v(q) ∝ rl1F1[1+ (k1+ l)/2; 1+ l;−q2α2/2). (12)

Our result for the variational ground-state wavefunction forrs = 10 is shown in figure 4
and agrees very well with the numerical result. For the 1p, 1d, 2s and 1f excited states the
variational results for the wavefunction in the momentum space are shown in figure 5 and
are in reasonable agreement with the corresponding results of the matrix diagonalization.
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Figure 6. The bound-state energyEvar and
variational parametersα and k1 for screened
repulsive test charges versusrs are shown by
the full curves fornr = 1 and l = 0 (1s) and
l = 1 (1p) within the RPA.

3.3. Different forms for the LFC

In this subsection we show that the existence of bound states in a screened repulsive potential
is not a special property of the LFC given in equation (2). Even within the RPA, where
G(q) = 0, we find bound states, however, the binding energy is small (see figure 6). Using
φ1v(r) we have studied the behaviour of the binding energy of the ground state and the first
excited state versusrs and found that bound states exist forrs > rscRPA = 9.75. Including
the LFC we found bound states forrs > rsc = 2.4. We conclude thatrscRPA/rsc = 4.06
which means thatNc/NcRPA = 16.5. Within the RPA the energy of the ground state is
reduced by a factor of 56 compared with the calculation using the LFC.

The numerical values for the bound states depend on the form for the LFC. If we use
the LFC as described in [10], where the LFC is parametrized by two coefficients, we obtain
the results for the 1s state shown in figure 7. Forrs > 3 bound-state energies are found in
good agreement with the results shown in figure 2. The critical density is somewhat lower
than in figure 2. This shows that the existence of bound states is not a special property of
our LFC formula. However,rsc and the exact values of the binding energies forrs nearrsc
depend on the form chosen for the LFC.
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Figure 7. The bound-state energies for screened repulsive test charges in a quantum well versus
rs are shown by the full curves fornr = 1 andl = 0 for different quantum well widthsL. The
full circles are calculated by matrix diagonalization forL = 0. The two-sum-rule approach [10]
is used for the LFC.

3.4. Quantum wells with finite width

In order to study real two-dimensional systems we consider quantum wells with infinite
barriers and a finite well widthL in the z-direction. The interaction potentialV (q) =
2πe2F(qL)/εLq is modified by a form factorF(x) [22]. The LFC for this model was
discussed in [10] within the two-sum-rule approach where the coefficientsC1(rs, L) and
C2(rs, L) depend on the well width.

Our variational results for the 1s state are shown in figure 7 for different well widths.
With increasing well widthrsc increases and the binding energy decreases. We have also
studied excited states and the results are qualitatively similar to that shown in figure 2.

4. Screened attractive test charges

4.1. The attractive test-charge potential

In this section we study bound states between a positive and a negative test charge screened
by the two-dimensional electron gas (attractive test-charge–test-charge interaction). The
effects of screening within the RPA have already been considered in the literature [14–16].
To classify the states we use the notation of the hydrogen atom withn and l.

The screened potential for attractive test charges versusr is shown in figure 8. Already
for rs = 4 large differences are seen between the screened potential according to the RPA
and when the LFC is taken into account. Many-body effects via the LFC lead to a weaker
attractive potential.

4.2. Matrix diagonalization

Numerical results for the binding energy of the 1s state versusrs are shown in figure 9 within
the RPA and by including the LFC. With increasing density the binding energies decrease
due to screening effects but unlike the three-dimensional case, where the ground-state energy
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Figure 8. A screened Coulomb potentialVsc,t (r) for attractive test charges versus distancer for
rs = 4 are shown by the full curves. The dotted curve represents the unscreened potential and
the broken curve the RPA. To obtain the chain curve the LFC within the two-sum-rule approach
[10] was used.

Figure 9. The ground-state energies for screened attractive test charges found by matrix
diagonalization versusrs are shown by the full circles. The variational resultsEmin are shown
as full curves when the LFC is used and as broken curves for the RPA.

vanishes at Mott’s critical densityNM [23], in two dimensions the binding energy remains
finite even forrs → 0 [14]. Using the LFC gives rise to a smaller binding energy. The
binding energy as a function ofrs has a minimum of−0.4 Rydberg∗ at rs = 0.8. This
minimum is induced by many-body effects and does not appear if the RPA is used for the
screening function.

In the unscreened limit the binding energies are given byEn = −4 Rydberg∗/(2n+1)2

with n = 0, 1, 2 . . . [12]. The exact numerical result for the ground-state energy within the
RPA as a function ofrs was given in [15]. Our results obtained by matrix diagonalization
are in agreement with these results. This confirms the accuracy of our method: we find
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−0.571 Rydberg∗, −0.859 Rydberg∗ and −2.969 Rydberg∗ for rs = 0.01, rs = 1 and
rs = 10, respectively.

4.3. The variational method

In the variational method we use for the 1s ground stateφ3v(r) = A exp(−r/2ν) and we
obtain〈T 〉 = Rydberg∗a∗2/4ν2 and

〈Vsc,t 〉 =
∫ ∞

0
dq qVsc,t (q)/[2π(1+ q2ν2)3/2]. (13)

Note that Vl = 0 for l = 0. Our results for the ground-state energy obtained with
the variational method and using the RPA are shown in figure 9. The binding energies
obtained with the variational method are somewhat smaller than the energies calculated
by matrix diagonalization. For instance, forrs = 0.01 we find−0.536 Rydberg∗ while
the numerical eigenvalue is−0.571 Rydberg∗ which corresponds to a difference of 7%.
Including the LFC in the variational method, the minimum of the binding energy is found
at rs = 0.9 with −0.298 Rydberg∗, see figure 9. The Fourier transform ofφ3v(r) is given
by φ3v(q) ∝ 1/(1+ 4q2ν2)3/2. We have checked thatφ3v(q) versusq for rs = 4 is in very
good agreement with the result obtained by matrix diagonalization.

For the first excited state (2s state) we useφ4v(r) = A(1 − rD) exp(−r/2κ). The
different terms of the variational energy are given by

〈T 〉 = Rydberg∗
a∗2

4κ2

1+ 2ν/κ + 9ν2/κ2

3− 2ν/κ + 3ν2/κ2
(14a)

and

〈Vsc,t 〉 = 1

2π

∫ ∞
0

dq qVsc,t (q)
1

(1+ q2κ2)7/2

×
{

1+ q
2κ2[15− 26κ/ν − 9κ2/ν2] + q4κ4[24+ 8κ/ν]

6− 4κ/ν + 6κ2/ν2

}
(14b)

with Vl = 0 for l = 0. The orthogonalization〈φ3v|φ4v〉 = 0 implies thatD = (1/ν+1/κ)/4.
For the second excited state (2p state) we useφ5v(r) = Ar exp(−r/2µ) and we obtain
〈T 〉 = Rydberg∗a∗2/12µ2, 〈Vl〉 = Rydberg∗a∗2l2/6µ2(l = 1) and

〈Vsc,t 〉 = 1

2π

∫ ∞
0

dq qVsc,t (q)
1− 3q2µ2/2

(1+ q2µ2)7/2
. (15)

Results for the 2s and 2p states and using the RPA are shown in figure 10. These states only
exist for rs > 27 and the 2s state is slightly lower in energy than the 2p state. These states
are well described by hydrogenic wavefunctions. When screening effects via the RPA are
included the 2s state and the 2p states are no longer degenerate, but the splitting between
2s and 2p is small. Excited states in two-dimensional systems have only been studied for
unscreened impurities in quantum wells [24].

4.4. Bound states induced by Friedel oscillations

Inclusion of the LFC in the screening function dramatically changes the results for the
excited states: we find excited states already forrs > 4. Within the RPA excited bound states
only exist for rs > 27. Many-body effects enhance Friedel oscillations [4]. The binding
energies and the number of excited states are determined by the attractive part of the first
(Friedel) minimum in the screened potential. In fact, when the LFC is included, it is possible
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Figure 10. The excited-state energies for screened attractive test charges found by the variational
method versusrs .

Table 3. Bound states between screened attractive test charges found by matrix diagonalization
and with the variational approach including the LFC forrs = 10. The values in curly brackets
represent variational parameters. Atrm the variational wavefunction has a maximum.

rs l nl Enum/Rydberg∗ Emin/Rydberg∗ rm/a
∗

10 0 1s −2.083 −1.963 {ν = 0.252a∗} 0.0
(10 0 1s −2.083 −1.101 {k1 = 0, α/a∗ = 0.57} 0.0)

10 0 2s −0.059 −0.0590{k2 = 11.63, k3 = 5.54, β/a∗ = 5.62} 13.5
10 1 1p −0.055 −0.0537{k1 = 11.75, α/a∗ = 5.64} 13.7
10 2 1d −0.039 −0.0380{k1 = 12.00, α/a∗ = 5.70} 13.9
10 3 1e −0.015 −0.0131{k1 = 12.28, α/a∗ = 5.83} 14.4

to use the same notation for the excited states as for the repulsive test-charge–test-charge
interaction. This is supported by the good agreement between the matrix diagonalization
method and the variational approach for the excited states using Gaussian wavefunctions for
the excited states. The important point is that the variational wavefunctionφ1v(r) exhibits
a maximum atrm = r∗ which fits with the minimumVsc,t (rF ) of the first Friedel oscillation
at rF . In contrast, for the 1s ground state, the binding energy is determined by the large
attractive part of the potential nearr = 0.

The binding energies for excited states obtained by matrix diagonalization versusrs are
shown in figure 11. For largers the first (Friedel) minimum is located at a large distance
(whereVl(r) is small) and states with differentl are not very different in energy. This
is the reason why forrs > 15 the number of excited states increases dramatically. For
largers the order of magnitude of the binding energy is−0.05 Rydberg∗: the energy scale
of the first (Friedel) minimum (see the inset in figure 11), is−0.1 Rydberg∗. The energy
values obtained by both methods are in reasonable agreement, see table 3 and figure 11.
When rs increasesrF also increases whileVsc,t (rF ) remains nearly constant (see the inset
in figure 11). The reduction of the binding energy of the excited states with decreasingrs
is due to the increasing positive part ofVl(r) with decreasingrF .

In table 3 we compare forrs = 10 the results for the binding energy obtained by matrix
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Figure 11. The excited-state energies for screened attractive test-charges found by matrix
diagonalization versusrs are shown by the full circles. The LFC is included. The full curves
represent the variational calculation. In the inset thers dependence of the first (Friedel) minimum
of the screened potential, characterized byrF andVsc,t (rF ), is shown.

diagonalization with the results of the variational approach. The first (Friedel) minimum
with rF = 13.2a∗ andVsc,t (rF ) = −0.131 Rydberg∗ for rs = 10 controls the binding energy:
the states 1p, 1d, and 1f are characterized by similar values ofrm, where the wavefunction
shows a maximum. In figure 12 we show in the Fourier space the wavefunctions obtained
numerically. We checked that these results can be well described by the Fourier transform
of φ1v(r) for the 1p, 1d, and 1f states and byφ2v(r) for the 2s state. The 1s state is described
by φ3v(r).

Using the LFC, we have also applied the variational method with an exponential
behaviour for the excited states. The binding energies obtained are roughly one order of
magnitude smaller than the binding energies found with the Gaussian form. This supports
our argument that the LFC leads to a qualitative change of excited bound states.

5. Discussion

We have discussed the screened potential between twotest chargeswhich are distinguishable
from the electrons providing the screening. The motivation for using test charges is that the
screened potential is known if the LFC for charge-density fluctuations is known. However,
we recently analysed the test-charge–electron interaction [25] where a different form for the
screening function [26] takes account of the indistinguishability (exchange) of the bound
electron and the electrons responsible for the screening. It was found that the binding
energies are much smaller than in the case of the test-charge–test-charge interaction.

In [4] we have studied, within the Kukkonen and Overhauser approach [26], the
electron–electron interaction by using only exchange effects in the LFC. Spin effects and
the indistinguishability of the electrons were taken into account. We concluded that the
screened test-charge–test-charge interaction potential gives a good estimate of the effective
electron–electron interaction potential [4]. For a study of the effective electron–electron
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Figure 12. The wavefunctionψ(q) of the ground state (1s) and the first excited states
(nr = 1, l = 1–3 andnr = 2, l = 0) for screened attractive test charges forrs = 10 versus the
wavenumberq as obtained by matrix diagonalization. The LFC is included.

interaction and spin effects the LFC for spin-density fluctuations has to be calculated and
this will be reported elsewhere.

For the three-dimensional electron gas an approach similar to the Kukkonen
and Overhauser approach was recently used to calculate the critical temperature for
superconductivity in systems with electron–phonon interaction and electron–electron
interaction [27]. Good agreement with experiments was reported. We have also studied the
three-dimensional electron gas [28]. For repulsive test-charges the 1s state binding energy
saturates at−0.065 Rydberg∗ at low densities. We conclude that the binding energies in
three-dimensional systems are smaller than in two dimensions, where we obtain a saturation
at−0.65 Rydberg∗.

6. Conclusion

We have studied bound states between two negative (repulsive) test charges and between
a positive and a negative (attractive) test charge screened by a two-dimensional electron
gas of given density. For repulsive test charges we found bound states at low electron
densitiesrs > rsc ≈ 2–3. The binding energy of the ground state saturates at low density at
about−0.65 Rydberg∗. For attractive test charges we found bound states for all densities.
The binding energies of excited states are increased due to Friedel oscillations enhanced
by many-body effects. We predicted excited states bound by the attractive part of the first
Friedel oscillation.
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